MATH 105A and 110A Review: Eigenvalues and diagonalization

Facts to Know:
Let A be any $n \times n$ matrix. A nonzero vector x is said to be an eigenvector of A if
The λ above is called an
λ is an eigenvalue of A if and only if
has a nontrivial solution. We find eigenvalues by solving the characteristic polynomial :
We say $\lambda = a$ is an eigenvalue of A with multiplicity k if
where
A matrix D is said to be a diagonal matrix if:
A matrix A is said to be diagonalizable if there exists a diagonal matrix D and some invertible matrix such that
Any $n \times n$ matrix A is diagonalizable if and only if A has
The diagonalization of A :
Any $n \times n$ matrix A is diagonalizable if and only if the following two hold:
1. All the eigenvalues are
2. If λ is an eigenvalue of multiplicity k , then there are

Examples:

1. Diagonalize the following matrix if possible:

$$A = \begin{bmatrix} 7 & 2 \\ -4 & 1 \end{bmatrix}$$